expor argumentos - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

expor argumentos - tradução para russo

Argumentar; Argumentos; Argumento filosófico

expor argumentos      
приводить доводы
expor argumentos      
приводить доводы
argumentar         
приводить доводы, приводить основания, аргументировать

Definição

argumento
sm (lat argumentu)
1 Raciocínio de onde se tira uma conclusão.
2 Arrazoamento, prova.
3 Resumo de uma obra; sumário: Argumento de um filme, de um romance.
4 Astr Quantidade de que depende uma equação, uma desigualdade ou uma circunstância qualquer do movimento de um planeta.
5 fam Altercação, contenda, discussão.
6 Ling Actante ou participante relacionado a um predicado
A. aparatoso: aquele em que há muito ornato e pompa, mas pouco fundo
A. de rachar: argumento indestrutível
A. intrínseco: o que é tirado da própria natureza do assunto.

Wikipédia

Argumento

Um argumento pode ser definido como uma afirmação acompanhada de justificativa (argumento retórico) ou como uma justaposição de duas afirmações opostas, argumento e contra-argumento (argumento dialético).

Na lógica e na filosofia um argumento é um conjunto de uma ou mais sentenças declarativas, também conhecidas como proposições, ou ainda, premissas, acompanhadas de uma outra frase declarativa conhecida como conclusão.

Em um argumento dedutivo (válido) o valor-verdade da conclusão é uma consequência lógica necessária das premissas que a antecedem, ou seja, sendo verdadeiras as premissas segue-se que necessariamente será verdadeira a conclusão. Caso alguma(s) premissa(s) não seja(m) verdadeira(s), uma conclusão verdadeira será apenas uma contingência. Também será contingente a verdade de uma conclusão num argumento dedutivo inválido, ou seja, um argumento em que mesmo a veracidade integral das premissas não garante, necessariamente, uma conclusão verdadeira.

Em argumento indutivo a verdade da conclusão não é garantida pelas premissas, mas apenas indicada pelas premissas. Muitos autores e correntes filosóficas não consideram o argumento indutivo como um tipo válido de argumento e a discussão acerca do estatuto lógico e epistemológico de uma indução desencadeou os debates mais frutíferos da história da filosofia, também conhecido como problema da indução.

Toda premissa, assim como toda conclusão, pode ser apenas verdadeira ou falsa, isto é, há um valor sempre binário que se atribui às sentenças declarativas que tomamos como premissas e conclusões, o chamado valor-verdade, que pode ser 0 ou 1, positivo ou negativo, V ou F. Jamais já uma terceira opção, no que se chama de lei do terceiro excluído, junto com o princípio de identidade e o de não contradição um dos pilares da tríade que alicerça a Lógica Clássica. Tal princípio também é sintetizado na forma de adágio latino, muito usado em narrativas, Tertium non datur (literalmente: "uma terceira opção não é dada", "das duas uma", etc.).

É muito importante não confundir valor-verdade com validade. Valor-verdade (ser verdadeiro ou falso) é algo que qualquer sentença declarativa possui. "O céu está azul" ou bem é uma declaração verdadeira ou bem é uma declaração falsa. Não existe "meio verdadeiro", nem importa a intensidade (se o céu está muito azul ou levemente azul), se está azul, em algum grau, é verdadeira, e se não está, é falsa.

Validade refere-se não às sentenças, mas ao argumento. Um argumento dedutivo inválido, por exemplo, isto é, um argumento onde mesmo com premissas verdadeiras não se garanta a verdade da conclusão, pode-se encontrar de forma contingente uma conclusão verdadeira, basta que a sentença declarativa que figura como conclusão seja uma sentença verdadeira.

E ainda podemos ter uma argumento inválido com todas as premissas e conclusões verdadeiras. Bastam que todas as sentenças declarativas do argumento sejam verdadeiras, mas o encadeamento lógico entre elas não faz qualquer sentido em termos garantir a verdade da conclusão, que é verdadeira apenas por contingência, não por necessidade.

Tome-se uma argumento dedutivo válido (encadeamento lógico correto entre premissas e conclusão) na forma de um silogismo clássico (premissa maior, premissa menor, conclusão). Caso as duas premissas sejam verdadeiras, necessariamente a conclusão será verdadeira.

Mas se trocarmos de lugar a conclusão e a premissa menor, temos uma experiência interessante: o argumento torna-se inválido (a verdade das premissas não garante mais a verdade da conclusão), mas continua com todas as suas sentenças verdadeiras, o que mostra que se pode ter um argumento totalmente inválido, mas verdadeiro

Também podemos ter um argumento válido (encadeamento lógico correto, silogismo perfeito) cuja conclusão não seja necessariamente verdadeira (pode ser verdadeira ou falsa, e se for verdadeira não o é por necessidade), basta que uma das premissas seja falsa, lembrando que se todas as premissas de um argumento válido forem falsas isso não garante conclusão falsa, ou seja, a recíproca da premissa-verdadeira/conclusão-verdadeira não se verifica para premissa-falsa/conclusão-falsa.

Em função disso, as frases que apresentam um argumento são referidas como sendo verdadeiras ou falsas, e em consequência, são válidas ou são inválidas.

Alguns autores referem-se à conclusão das premissas usando os termos declaração, frase, afirmação ou proposição.

A razão para a preocupação com a verdade é ontológica quanto ao significado dos termos (proposições) em particular. Seja qual termo for utilizado, toda premissa, bem como a conclusão, deve ser capaz de ser apenas verdadeira ou falsa e nada mais: elas devem ser truthbearers ("portadores de verdade", em português).